9 May 2019

Redox in CFS: to what do we owe this electron flow?

Oxidative stress has long been implicated in CFS. Here are some data summary tables from a draft paper on redox in CFS written around this time. They generally show how an oxidative redox status may affect many molecules and tissues, and associate with many symptoms.



And some related diagrams...

References

1.           Kennedy, G. et al. Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic. Biol. Med. 39, 584–9 (2005).

2.           Spence, V. A., Kennedy, G., Belch, J. J. F., Hill, A. & Khan, F. Low-grade inflammation and arterial wave reflection in patients with chronic fatigue syndrome. Clin. Sci. (Lond). 114, 561–6 (2008).

3.           Robinson, M. et al. Plasma IL-6, its soluble receptors and F2-isoprostanes at rest and during exercise in chronic fatigue syndrome. Scand. J. Med. Sci. Sports 20, 282–90 (2010).

4.           Kennedy, G., Khan, F., Hill, A., Underwood, C. & Belch, J. J. F. Biochemical and vascular aspects of pediatric chronic fatigue syndrome. Arch. Pediatr. Adolesc. Med. 164, 817–23 (2010).

5.           Jammes, Y., Steinberg, J. G., Delliaux, S. & Brégeon, F. Chronic fatigue syndrome combines increased exercise-induced oxidative stress and reduced cytokine and Hsp responses. J. Intern. Med. 266, 196–206 (2009).

6.           Jammes, Y., Steinberg, J. G., Mambrini, O., Brégeon, F. & Delliaux, S. Chronic fatigue syndrome: assessment of increased oxidative stress and altered muscle excitability in response to incremental exercise. J. Intern. Med. 257, 299–310 (2005).

7.           Polli, A. et al. Relationship Between Exercise-induced Oxidative Stress Changes and Parasympathetic Activity in Chronic Fatigue Syndrome: An Observational Study in Patients and Healthy Subjects. Clin. Ther. (2019). doi:10.1016/j.clinthera.2018.12.012

8.           Tomic, S., Brkic, S., Maric, D. & Mikic, A. N. Lipid and protein oxidation in female patients with chronic fatigue syndrome. Arch. Med. Sci. 8, 886–91 (2012).

9.           Jammes, Y., Steinberg, J. G., Guieu, R. & Delliaux, S. Chronic fatigue syndrome with history of severe infection combined altered blood oxidant status , and reduced potassium efflux and muscle excitability at exercise. Open J. Intern. Medicicne 3, 98–105 (2013).

10.        Jammes, Y., Steinberg, J. G. & Delliaux, S. Chronic fatigue syndrome: acute infection and history of physical activity affect resting levels and response to exercise of plasma oxidant/antioxidant status and heat shock proteins. J. Intern. Med. 272, 74–84 (2012).

11.        Brkic, S., Tomic, S., Maric, D., Novakov Mikic, A. & Turkulov, V. Lipid peroxidation is elevated in female patients with chronic fatigue syndrome. Med. Sci. Monit. 16, CR628-32 (2010).

12.        Vecchiet, J. et al. Relationship between musculoskeletal symptoms and blood markers of oxidative stress in patients with chronic fatigue syndrome. Neurosci. Lett. 335, 151–4 (2003).

13.        Smirnova, I. V & Pall, M. L. Elevated levels of protein carbonyls in sera of chronic fatigue syndrome patients. Mol. Cell. Biochem. 248, 93–5 (2003).

14.        Maes, M., Kubera, M., Uytterhoeven, M., Vrydags, N. & Bosmans, E. Increased plasma peroxides as a marker of oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med. Sci. Monit. 17, SC11-5 (2011).

15.        Fukuda, S. et al. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity. Biol. Psychol. 118, 88–93 (2016).

16.        Fenouillet, E. et al. Association of biomarkers with health-related quality of life and history of stressors in myalgic encephalomyelitis/chronic fatigue syndrome patients. J. Transl. Med. 14, 251 (2016).

17.        Kurup, R. K. & Kurup, P. A. Isoprenoid pathway dysfunction in chronic fatigue syndrome. Acta Neuropsychiatr. 15, 266–73 (2003).

18.        Meeus, M. et al. Nitric oxide concentrations are normal and unrelated to activity level in chronic fatigue syndrome: a case-control study. In Vivo 24, 865–9 (2010).

19.        Meeus, M., Roussel, N. A., Truijen, S. & Nijs, J. Reduced pressure pain thresholds in response to exercise in chronic fatigue syndrome but not in chronic low back pain: an experimental study. J. Rehabil. Med. 42, 884–90 (2010).

20.        Suárez, A. et al. Nitric oxide metabolite production during exercise in chronic fatigue syndrome: a case-control study. J. Womens. Health (Larchmt). 19, 1073–7 (2010).

21.        Grant, J. E., Veldee, M. S. & Buchwald, D. Analysis of dietary intake and selected nutrient concentrations in patients with chronic fatigue syndrome. J. Am. Diet. Assoc. 96, 383–6 (1996).

22.        Maes, M. et al. Coenzyme Q10 deficiency in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in ME/CFS due to cardiovascular disorder. Neuro Endocrinol. Lett. 30, 470–6 (2009).

23.        Miwa, K. & Fujita, M. Fluctuation of serum vitamin E (alpha-tocopherol) concentrations during exacerbation and remission phases in patients with chronic fatigue syndrome. Heart Vessels 25, 319–23 (2010).

24.        Miwa, K. & Fujita, M. Increased oxidative stress suggested by low serum vitamin E concentrations in patients with chronic fatigue syndrome. Int. J. Cardiol. 136, 238–9 (2009).

25.        Mikirova, N., Casciari, J. & Hunninghake, R. The assessment of the energy metabolism in patients with chronic fatigue syndrome by serum fluorescence emission. Altern. Ther. Health Med. 18, 36–40 (2012).

26.        Richards, R. S., Wang, L. & Jelinek, H. Erythrocyte oxidative damage in chronic fatigue syndrome. Arch. Med. Res. 38, 94–8 (2007).

27.        Richards, R. S. et al. Investigation of Erythrocyte Oxidative Damage in Rheumatoid Arthritis and Chronic Fatigue Syndrome. J. Chronic Fatigue Syndr. 6, 37–46 (2000).

28.        Castro-Marrero, J. et al. Could mitochondrial dysfunction be a differentiating marker between chronic fatigue syndrome and fibromyalgia? Antioxid. Redox Signal. 19, 1855–60 (2013).

29.        Maes, M. et al. Increased 8-hydroxy-deoxyguanosine, a marker of oxidative damage to DNA, in major depression and myalgic encephalomyelitis / chronic fatigue syndrome. Neuro Endocrinol. Lett. 30, 715–22 (2009).

30.        Fulle, S. et al. Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome. Free Radic. Biol. Med. 29, 1252–9 (2000).

31.        Shungu, D. C. et al. Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed. 25, 1073–87 (2012).

32.        Natelson, B. H. et al. Multimodal and simultaneous assessments of brain and spinal fluid abnormalities in chronic fatigue syndrome and the effects of psychiatric comorbidity. J. Neurol. Sci. 375, 411–416 (2017).

33.        Puri, B. K. et al. An in vivo proton neurospectroscopy study of cerebral oxidative stress in myalgic encephalomyelitis (chronic fatigue syndrome). Prostaglandins. Leukot. Essent. Fatty Acids 81, 303–5 (2009).

34.        Maes, M., Mihaylova, I. & Leunis, J.-C. Chronic fatigue syndrome is accompanied by an IgM-related immune response directed against neopitopes formed by oxidative or nitrosative damage to lipids and proteins. Neuro Endocrinol. Lett. 27, 615–21 (2006).

35.        Maes, M. et al. IgM-mediated autoimmune responses directed against anchorage epitopes are greater in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) than in major depression. Metab. Brain Dis. 27, 415–23 (2012).

36.        de Vega, W. C., Herrera, S., Vernon, S. D. & McGowan, P. O. Epigenetic modifications and glucocorticoid sensitivity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). BMC Med. Genomics 10, 11 (2017).

37.        Gow, J. W. et al. A gene signature for post-infectious chronic fatigue syndrome. BMC Med. Genomics 2, 38 (2009).

38.        Thambirajah, A. A., Sleigh, K., Stiver, H. G. & Chow, A. W. Differential heat shock protein responses to strenuous standardized exercise in chronic fatigue syndrome patients and matched healthy controls. Clin. Invest. Med. 31, E319-27 (2008).

39.        Brenu, E. W., Staines, D. R. & Marshall-Gradisnik, S. M. Methylation Profile of CD4+ T Cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. J. Clin. Cell. Immunol. 05, (2014).

40.        Ciregia, F. et al. Bottom-up proteomics suggests an association between differential expression of mitochondrial proteins and chronic fatigue syndrome. Transl. Psychiatry 6, e904 (2016).

41.        Pietrangelo, T. et al. Transcription profile analysis of vastus lateralis muscle from patients with chronic fatigue syndrome. Int. J. Immunopathol. Pharmacol. 22, 795–807 (2009).

42.        Baraniuk, J. N. et al. A Chronic Fatigue Syndrome - related proteome in human cerebrospinal fluid. BMC Neurol. 5, 22 (2005).

43.        Naviaux, R. K. et al. Metabolic features of chronic fatigue syndrome. Proc. Natl. Acad. Sci. 113, E5472–E5480 (2016).

44.        Maes, M., Mihaylova, I., Kubera, M. & Bosmans, E. Not in the mind but in the cell: increased production of cyclo-oxygenase-2 and inducible NO synthase in chronic fatigue syndrome. Neuro Endocrinol. Lett. 28, 463–9 (2007).

45.        Broderick, G. et al. Identifying illness parameters in fatiguing syndromes using classical projection methods. Pharmacogenomics 7, 407–19 (2006).

46.        Richards, R. S., Roberts, T. K., McGregor, N. R., Dunstan, R. H. & Butt, H. L. Blood parameters indicative of oxidative stress are associated with symptom expression in chronic fatigue syndrome. Redox Rep. 5, 35–41 (2000).

47.        Maes, M., Mihaylova, I., Kubera, M. & Leunis, J.-C. An IgM-mediated immune response directed against nitro-bovine serum albumin (nitro-BSA) in chronic fatigue syndrome (CFS) and major depression: evidence that nitrosative stress is another factor underpinning the comorbidity between major depression and CF. Neuro Endocrinol. Lett. 29, 313–9 (2008).

48.        Maes, M. et al. Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis / chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression. Neuro Endocrinol. Lett. 32, 133–40 (2011).

49.        Richards, R. S., McGregor, N. R. & Roberts, T. K. Association Between Oxidative Damage Markers and Self-Reported Temporomandibular Dysfunction Symptoms in Patients with Chronic Fatigue Syndrome. J. Chronic Fatigue Syndr. 12, 45–61 (2004).

50.        Meeus, M. et al. Unravelling intracellular immune dysfunctions in chronic fatigue syndrome: interactions between protein kinase R activity, RNase L cleavage and elastase activity, and their clinical relevance. In Vivo 22, 115–21 (2008).

51.        Nijs, J. et al. Chronic fatigue syndrome: exercise performance related to immune dysfunction. Med. Sci. Sports Exerc. 37, 1647–54 (2005).

52.        Majid, A. Hypothesis: Chronic Fatigue is a state of accelerated oxidative molecular injury. J. Adv. Med. 6, 83–96 (1993).

53.        Bounous, G. & Molson, J. Competition for glutathione precursors between the immune system and the skeletal muscle: pathogenesis of chronic fatigue syndrome. Med. Hypotheses 53, 347–9 (1999).

54.        Pall, M. L. Elevated, sustained peroxynitrite levels as the cause of chronic fatigue syndrome. Med. Hypotheses 54, 115–25 (2000).

55.        Pall, M. Explaining Unexplained Illnesses: Disease Paradigm for Chronic Fatigue Syndrome, Multiple Chemical Sensitivity, Fibromyalgia, Post-Traumatic Stress Disorder, Gulf War Syndrome and Others. (New York: Haworth Medical Press, 2007).

56.        Ockerman, P. Antioxidant treatment of chronic fatigue syndrome. Clin. Pract. Altern. Med. 1, 88–91 (2000).

57.        Kurup, R. K. & Kurup, P. A. Hypothalamic digoxin, cerebral chemical dominance and myalgic encephalomyelitis. Int. J. Neurosci. 113, 683–701 (2003).

58.        Van Konynenburg, R. A. Glutathione depletion-methylation cycle block: a hypothesis for the pathogenesis of chronic fatigue syndrome. 8th International IACFS Conference on Chronic Fatigue Syndrome, Fibromyalgia and other Related Illnesses (2007).

59.        Van Konynenburg, R. A. Chronic fatigue syndrome and autism. Townsend Lett. 279, 84–6 (2006).

60.        Maes, M., Mihaylova, I. & Bosmans, E. Not in the mind of neurasthenic lazybones but in the cell nucleus: patients with chronic fatigue syndrome have increased production of nuclear factor kappa beta. Neuro Endocrinol. Lett. 28, 456–62 (2007).

61.        Maes, M. Inflammatory and oxidative and nitrosative stress pathways underpinning chronic fatigue, somatization and psychosomatic symptoms. Curr. Opin. Psychiatry 22, 75–83 (2009).

62.        Morris, G. & Maes, M. A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome. Metab. Brain Dis. 28, 523–40 (2013).

63.        Morris, G. & Maes, M. Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Curr. Neuropharmacol. 12, 168–85 (2014).

64.        Lemle, M. D. Hypothesis: chronic fatigue syndrome is caused by dysregulation of hydrogen sulfide metabolism. Med. Hypotheses 72, 108–9 (2009).

65.        Twisk, F. N. M. The 4I Hypothesis: A Neuro-Immunological Explanation for Characteristic Symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int. J. Neurol. Res. 1, 20–38 (2015).

66.        Castro-Marrero, J. et al. Does oral coenzyme Q10 plus NADH supplementation improve fatigue and biochemical parameters in chronic fatigue syndrome? Antioxid. Redox Signal. 22, 679–85 (2015).

67.        Wang, X. et al. Antifatigue Potential Activity of Sarcodon imbricatus in Acute Excise-Treated and Chronic Fatigue Syndrome in Mice via Regulation of Nrf2-Mediated Oxidative Stress. Oxid. Med. Cell. Longev. 2018, 9140896 (2018).

68.        Lee, J.-S., Kim, H.-G., Lee, D.-S. & Son, C.-G. Oxidative Stress is a Convincing Contributor to Idiopathic Chronic Fatigue. Sci. Rep. 8, 12890 (2018).

69.        Germain, A., Ruppert, D., Levine, S. M. & Hanson, M. R. Prospective Biomarkers from Plasma Metabolomics of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Implicate Redox Imbalance in Disease Symptomatology. Metabolites 8, (2018).

 

No comments:

Post a Comment