This data summary table collects studies showing how redox and Nrf2 regulate immunity and infections. I may finish a full post on this at some point.
References
1. Liang, J. et al.
Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by
Increasing ROS and Depleting Glutathione. Front. Immunol. 9, 2584
(2018).
2. Zagorski, J. W. et
al. Differential effects of the Nrf2 activators tBHQ and CDDO-Im on the
early events of T cell activation. Biochem. Pharmacol. 147, 67–76
(2018).
3. Wen, Z. et al. A
Protective Role of the NRF2-Keap1 Pathway in Maintaining Intestinal Barrier
Function. Oxid. Med. Cell. Longev. 2019, 1759149 (2019).
4. Zhao, R. et al.
Nasal epithelial barrier disruption by particulate matter ≤2.5 μm via tight
junction protein degradation. J. Appl. Toxicol. 38, 678–687
(2018).
5. Kouadri, A. et al.
Involvement of the Prion Protein in the Protection of the Human Bronchial
Epithelial Barrier Against Oxidative Stress. Antioxid. Redox Signal. 31,
59–74 (2019).
6. Haddad, J. J. A redox
microenvironment is essential for MAPK-dependent secretion of pro-inflammatory
cytokines: modulation by glutathione (GSH/GSSG) biosynthesis and equilibrium in
the alveolar epithelium. Cell. Immunol. 270, 53–61 (2011).
7. Øvrevik, J., Refsnes,
M., Låg, M., Holme, J. A. & Schwarze, P. E. Activation of proinflammatory
responses in cells of the airway mucosa by particulate matter: Oxidant- and
non-oxidant-mediated triggering mechanisms. Biomolecules 5,
1399–1440 (2015).
8. Khomich, O. A.,
Kochetkov, S. N., Bartosch, B. & Ivanov, A. V. Redox biology of respiratory
viral infections. Viruses 10, (2018).
9. Manzel, L. J., Shi, L.,
O’Shaughnessy, P. T., Thorne, P. S. & Look, D. C. Inhibition by cigarette
smoke of nuclear factor-κB-dependent response to bacteria in the airway. Am.
J. Respir. Cell Mol. Biol. 44, 155–65 (2011).
10. Modestou, M. A., Manzel,
L. J., El-Mahdy, S. & Look, D. C. Inhibition of IFN-gamma-dependent antiviral
airway epithelial defense by cigarette smoke. Respir. Res. 11, 64
(2010).
11. Bauer, C. M. T. et al.
Cigarette smoke suppresses type I interferon-mediated antiviral immunity in
lung fibroblast and epithelial cells. J. Interferon Cytokine Res. 28,
167–79 (2008).
12. Menzel, M. et al.
Oxidative Stress Attenuates TLR3 Responsiveness and Impairs Anti-viral
Mechanisms in Bronchial Epithelial Cells From COPD and Asthma Patients. Front.
Immunol. 10, 2765 (2019).
13. Chen, X. et al.
Urban particulate matter (PM) suppresses airway antibacterial defence. Respir.
Res. 19, 5 (2018).
14. Singh, R. et al.
Enhancement of the gut barrier integrity by a microbial metabolite through the
Nrf2 pathway. Nat. Commun. 10, 89 (2019).
15. London, N. R. et al.
Nrf2 activation via Keap1 deletion or sulforaphane treatment reduces
Ova‐induced sinonasal inflammation. Allergy 74, 1780–1783 (2019).
16. Sussan, T. E. et al.
Nrf2 reduces allergic asthma in mice through enhanced airway epithelial
cytoprotective function. Am. J. Physiol. Lung Cell. Mol. Physiol. 309,
L27-36 (2015).
17. Kesic, M. J., Simmons, S.
O., Bauer, R. & Jaspers, I. Nrf2 expression modifies influenza A entry and
replication in nasal epithelial cells. Free Radic. Biol. Med. 51,
444–53 (2011).
18. Dai, J. et al. Inhibition
of curcumin on influenza A virus infection and influenzal pneumonia via
oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. Int.
Immunopharmacol. 54, 177–187 (2018).
19. Meyer, M. et al.
Sulforaphane induces SLPI secretion in the nasal mucosa. Respir. Med. 107,
472–5 (2013).
20. Mihaylova, V. T. et al.
Regional Differences in Airway Epithelial Cells Reveal Tradeoff between Defense
against Oxidative Stress and Defense against Rhinovirus. Cell Rep. 24,
3000-3007.e3 (2018).
21. Olagnier, D. et al.
Nrf2 negatively regulates STING indicating a link between antiviral sensing and
metabolic reprogramming. Nat. Commun. 9, 3506 (2018).
22. Cieslik, K. A. et al.
Improved Cardiovascular Function in Old Mice After N-Acetyl Cysteine and
Glycine Supplemented Diet: Inflammation and Mitochondrial Factors. J.
Gerontol. A. Biol. Sci. Med. Sci. 73, 1167–1177 (2018).
23. Sekhar, R. V, Liu, C. W.
& Rice, S. Increasing glutathione concentrations with cysteine and glycine
supplementation lowers inflammation in HIV patients. AIDS 29,
1899–900 (2015).
24. Arnalich, F. et al.
Intracellular glutathione deficiency is associated with enhanced nuclear
factor-kappaB activation in older non-insulin dependent diabetic patients. Free
Radic. Res. 35, 873–84 (2001).
25. Cordero, M. D. et al.
NLRP3 inflammasome is activated in fibromyalgia: the effect of coenzyme Q10. Antioxid.
Redox Signal. 20, 1169–80 (2014).
26. Kim, V. Y. et al.
Glutathione Reductase Promotes Fungal Clearance and Suppresses Inflammation
during Systemic Candida albicans Infection in Mice. J. Immunol. 203,
2239–2251 (2019).
27. Reddy, N. M. et al.
Innate immunity against bacterial infection following hyperoxia exposure is
impaired in NRF2-deficient mice. J. Immunol. 183, 4601–8 (2009).
28. Limongi, D. et al.
GSH-C4 Acts as Anti-inflammatory Drug in Different Models of Canonical and Cell
Autonomous Inflammation Through NFκB Inhibition. Front. Immunol. 10,
155 (2019).
29. Thimmulappa, R. K. et
al. Nrf2 is a critical regulator of the innate immune response and survival
during experimental sepsis. J. Clin. Invest. 116, 984–95 (2006).
30. Lavieri, R., Rubartelli,
A. & Carta, S. Redox stress unbalances the inflammatory cytokine network:
role in autoinflammatory patients and healthy subjects. J. Leukoc. Biol.
99, 79–86 (2016).
31. Yan, J. et al.
Glutathione reductase facilitates host defense by sustaining phagocytic
oxidative burst and promoting the development of neutrophil extracellular
traps. J. Immunol. 188, 2316–27 (2012).
32. Yan, J. et al.
Glutathione reductase is essential for host defense against bacterial
infection. Free Radic. Biol. Med. 61C, 320–332 (2013).
33. Villa, P., Saccani, A.,
Sica, A. & Ghezzi, P. Glutathione protects mice from lethal sepsis by
limiting inflammation and potentiating host defense. J. Infect. Dis. 185,
1115–20 (2002).
34. Chatterjee, M. et al.
Ascorbate sustains neutrophil NOS expression, catalysis, and oxidative burst. Free
Radic. Biol. Med. 45, 1084–93 (2008).
35. Bozonet, S. M., Carr, A.
C., Pullar, J. M. & Vissers, M. C. M. Enhanced human neutrophil vitamin C
status, chemotaxis and oxidant generation following dietary supplementation
with vitamin C-rich SunGold kiwifruit. Nutrients 7, 2574–88
(2015).
36. Garg, S., Vitvitsky, V.,
Gendelman, H. E. & Banerjee, R. Monocyte differentiation, activation, and
mycobacterial killing are linked to transsulfuration-dependent redox
metabolism. J. Biol. Chem. 281, 38712–20 (2006).
37. Viora, M. et al.
Redox imbalance and immune functions: opposite effects of oxidized low-density
lipoproteins and N-acetylcysteine. Immunology 104, 431–8 (2001).
38. Malorni, W. et al.
Oxidized low-density lipoproteins affect natural killer cell activity by
impairing cytoskeleton function and altering the cytokine network. Exp. Cell
Res. 236, 436–45 (1997).
39. Tsuyuki, S. et al.
N-acetylcysteine improves cytotoxic activity of cirrhotic rat liver-associated
mononuclear cells. Int. Immunol. 10, 1501–8 (1998).
40. Hanson, M. G. V et al.
A short-term dietary supplementation with high doses of vitamin E increases NK
cell cytolytic activity in advanced colorectal cancer patients. Cancer
Immunol. Immunother. 56, 973–84 (2007).
41. Vojdani, A. et al.
Low natural killer cell cytotoxic activity in autism: the role of glutathione,
IL-2 and IL-15. J. Neuroimmunol. 205, 148–54 (2008).
42. Chernyshov, V. P. et
al. Up-regulation of interferon-gamma production by reduced glutathione,
anthocyane and L-cysteine treatment in children with allergic asthma and
recurrent respiratory diseases. Russ. J. Immunol. 7, 48–56
(2002).
43. Richie, J. P. et al.
Randomized controlled trial of oral glutathione supplementation on body stores
of glutathione. Eur. J. Nutr. 54, 251–63 (2015).
44. Sinha, R. et al.
Oral supplementation with liposomal glutathione elevates body stores of
glutathione and markers of immune function. Eur. J. Clin. Nutr. 72,
105–111 (2018).
45. Kuppner, M. C. et al.
Differential effects of ifosfamide on dendritic cell-mediated stimulation of T
cell interleukin-2 production, natural killer cell cytotoxicity and
interferon-gamma production. Clin. Exp. Immunol. 153, 429–38
(2008).
46. Zhang, G., Nichols, R. D.,
Taniguchi, M., Nakayama, T. & Parmely, M. J. Gamma interferon production by
hepatic NK T cells during Escherichia coli infection is resistant to the
inhibitory effects of oxidative stress. Infect. Immun. 71,
2468–77 (2003).
47. Kosmider, B. et al.
Nrf2 protects human alveolar epithelial cells against injury induced by
influenza A virus. Respir. Res. 13, 43 (2012).
48. Loboda, A. et al.
HIF-1 induction attenuates Nrf2-dependent IL-8 expression in human endothelial
cells. Antioxid. Redox Signal. 11, 1501–17 (2009).
49. Zhang, X., Chen, X., Song,
H., Chen, H.-Z. & Rovin, B. H. Activation of the Nrf2/antioxidant response
pathway increases IL-8 expression. Eur. J. Immunol. 35, 3258–67
(2005).
50. Seelige, R. et al.
Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and
restrict MCMV infection. Sci. Rep. 8, 13670 (2018).
51. Kobayashi, E. H. et al.
Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory
cytokine transcription. Nat. Commun. 7, 11624 (2016).
52. Mills, E. L. et al.
Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation
of KEAP1. Nature 556, 113–117 (2018).
53. Piantadosi, C. A. et
al. Heme oxygenase-1 couples activation of mitochondrial biogenesis to
anti-inflammatory cytokine expression. J. Biol. Chem. 286,
16374–85 (2011).
54. Hennig, P. et al.
The Crosstalk between Nrf2 and Inflammasomes. Int. J. Mol. Sci. 19,
562 (2018).
55. Nadeem, A. et al.
Differential regulation of Nrf2 is linked to elevated inflammation and
nitrative stress in monocytes of children with autism. Psychoneuroendocrinology
113, 104554 (2020).
56. Wu, M. et al.
Immunomodulators targeting MARCO expression improve resistance to postinfluenza
bacterial pneumonia. Am. J. Physiol. Lung Cell. Mol. Physiol. 313,
L138–L153 (2017).
57. Reddy, N. M., Potteti, H.
R., Mariani, T. J., Biswal, S. & Reddy, S. P. Conditional deletion of Nrf2
in airway epithelium exacerbates acute lung injury and impairs the resolution
of inflammation. Am. J. Respir. Cell Mol. Biol. 45, 1161–8
(2011).
58. Olagnier, D. et al.
Nrf2, a PPARγ alternative pathway to promote CD36 expression on inflammatory
macrophages: implication for malaria. PLoS Pathog. 7, e1002254
(2011).
59. Staitieh, B. S. et al.
HIV-1 decreases Nrf2/ARE activity and phagocytic function in alveolar
macrophages. J. Leukoc. Biol. 102, 517–525 (2017).
60. Kong, X. et al.
Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects
against sepsis. Am. J. Respir. Crit. Care Med. 184, 928–38
(2011).
61. Bewley, M. A. et al.
Opsonic Phagocytosis in Chronic Obstructive Pulmonary Disease Is Enhanced by
Nrf2 Agonists. Am. J. Respir. Crit. Care Med. 198, 739–750
(2018).
62. Harvey, C. J. et al.
Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages
in patients with COPD and in a mouse model. Sci. Transl. Med. 3,
78ra32 (2011).
63. Kadl, A. et al.
Identification of a novel macrophage phenotype that develops in response to
atherogenic phospholipids via Nrf2. Circ. Res. 107, 737–46
(2010).
64. Helou, D. G. et al.
Nrf2 downregulates zymosan-induced neutrophil activation and modulates
migration. PLoS One 14, e0216465 (2019).
65. Kumar, P. et al.
IL-27 promotes NK cell effector functions via Maf-Nrf2 pathway during influenza
infection. Sci. Rep. 9, 4984 (2019).
66. Boss, A. P. et al.
The Nrf2 activator tBHQ inhibits the activation of primary murine natural
killer cells. Food Chem. Toxicol. 121, 231–236 (2018).
67. Rojo, A. I. et al.
Redox control of microglial function: molecular mechanisms and functional
significance. Antioxid. Redox Signal. 21, 1766–801 (2014).
68. Garg, G., Singh, S.,
Singh, A. K. & Rizvi, S. I. N-acetyl-l-cysteine attenuates oxidative damage
and neurodegeneration in rat brain during aging. Can. J. Physiol. Pharmacol.
96, 1189–1196 (2018).
69. Cruz, J. C., Flôr, A. F.
L., França-Silva, M. S., Balarini, C. M. & Braga, V. A. Reactive Oxygen
Species in the Paraventricular Nucleus of the Hypothalamus Alter Sympathetic
Activity During Metabolic Syndrome. Front. Physiol. 6, 384
(2015).
70. Chan, S. H. H. & Chan,
J. Y. H. Brain stem oxidative stress and its associated signaling in the
regulation of sympathetic vasomotor tone. J. Appl. Physiol. 113,
1921–8 (2012).
71. Rao, X., Zhong, J., Brook,
R. D. & Rajagopalan, S. Effect of Particulate Matter Air Pollution on
Cardiovascular Oxidative Stress Pathways. Antioxidants Redox Signal. 28,
797–818 (2018).
72. Liu, C. et al.
Central IKKβ inhibition prevents air pollution mediated peripheral inflammation
and exaggeration of type II diabetes. Part. Fibre Toxicol. 11, 53
(2014).
73. Alfieri, A. et al.
Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the
cerebral vasculature against blood-brain barrier disruption and neurological
deficits in stroke. Free Radic. Biol. Med. 65, 1012–1022 (2013).
74. Zhao, X. et al.
Cleaning up after ICH: the role of Nrf2 in modulating microglia function and
hematoma clearance. J. Neurochem. 133, 144–52 (2015).
75. Trujillo, J. a et al.
The cellular redox environment alters antigen presentation. J. Biol. Chem.
289, 27979–91 (2014).
76. Weiskopf, D. et al.
Oxidative stress can alter the antigenicity of immunodominant peptides. J.
Leukoc. Biol. 87, 165–72 (2010).
77. Griffiths, H. R., Rooney,
M. C. O. & Perrie, Y. Does Dysregulation of Redox State Underpin the
Decline of Innate Immunity with Aging? Antioxid. Redox Signal. 32,
1014–1030 (2020).
78. Carilho Torrao, R. B. D.,
Dias, I. H., Bennett, S. J., Dunston, C. R. & Griffiths, H. R. Healthy
ageing and depletion of intracellular glutathione influences T cell membrane
thioredoxin-1 levels and cytokine secretion. Chem. Cent. J. 7,
150 (2013).
79. Kesarwani, P., Murali, A.
K., Al-Khami, A. A. & Mehrotra, S. Redox regulation of T-cell function:
from molecular mechanisms to significance in human health and disease. Antioxid.
Redox Signal. 18, 1497–534 (2013).
80. Mensurado, S. et al.
Tumor-associated neutrophils suppress pro-tumoral IL-17+ γδ T cells through
induction of oxidative stress. PLoS Biol. 16, e2004990 (2018).
81. Bouamama, S., Merzouk, H.,
Medjdoub, A., Merzouk-Saidi, A. & Merzouk, S. A. Effects of exogenous
vitamins A, C, and E and NADH supplementation on proliferation, cytokines
release, and cell redox status of lymphocytes from healthy aged subjects. Appl.
Physiol. Nutr. Metab. 42, 579–587 (2017).
82. Marthandan, S., Hyland,
P., Pawelec, G. & Barnett, Y. An investigation of the effects of the
antioxidants, ebselen or N-acetyl cysteine on human peripheral blood
mononuclear cells and T cells. Immun. Ageing 10, 7 (2013).
83. Jariwalla, R. J. et al.
Restoration of blood total glutathione status and lymphocyte function following
alpha-lipoic acid supplementation in patients with HIV infection. J. Altern.
Complement. Med. 14, 139–46 (2008).
84. Seyerl, M. et al.
Oxidized phospholipids induce anergy in human peripheral blood T cells. Eur.
J. Immunol. 38, 778–87 (2008).
85. Sha, L. K. et al.
Loss of Nrf2 in bone marrow-derived macrophages impairs antigen-driven CD8(+) T
cell function by limiting GSH and Cys availability. Free Radic. Biol. Med.
83, 77–88 (2015).
86. Mougiakakos, D.,
Johansson, C. C., Jitschin, R., Böttcher, M. & Kiessling, R. Increased
thioredoxin-1 production in human naturally occurring regulatory T cells
confers enhanced tolerance to oxidative stress. Blood 117, 857–61
(2011).
87. Mak, T. W. et al.
Glutathione Primes T Cell Metabolism for Inflammation. Immunity 46,
675–689 (2017).
88. Li, N. & Buglak, N.
Convergence of air pollutant-induced redox-sensitive signals in the dendritic
cells contributes to asthma pathogenesis. Toxicol. Lett. 237,
55–60 (2015).
89. Agrawal, A., Kaushal, P.,
Agrawal, S., Gollapudi, S. & Gupta, S. Thimerosal induces TH2 responses via
influencing cytokine secretion by human dendritic cells. J. Leukoc. Biol.
81, 474–82 (2007).
90. Kim, H.-J., Barajas, B.,
Wang, M. & Nel, A. E. Nrf2 activation by sulforaphane restores the
age-related decrease of T(H)1 immunity: role of dendritic cells. J. Allergy
Clin. Immunol. 121, 1255-1261.e7 (2008).
91. Peterson, J. D., Herzenberg,
L. a, Vasquez, K. & Waltenbaugh, C. Glutathione levels in
antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc.
Natl. Acad. Sci. U. S. A. 95, 3071–6 (1998).
92. Aizawa, H. et al.
Oxidative stress enhances the expression of IL-33 in human airway epithelial
cells. Respir. Res. 19, 52 (2018).
93. Frossi, B., De Carli, M.,
Piemonte, M. & Pucillo, C. Oxidative microenvironment exerts an opposite
regulatory effect on cytokine production by Th1 and Th2 cells. Mol. Immunol.
45, 58–64 (2008).
94. Murata, Y., Shimamura, T.
& Hamuro, J. The polarization of T(h)1/T(h)2 balance is dependent on the
intracellular thiol redox status of macrophages due to the distinctive cytokine
production. Int. Immunol. 14, 201–12 (2002).
95. Ly, J. et al.
Liposomal Glutathione Supplementation Restores TH1 Cytokine Response to
Mycobacterium tuberculosis Infection in HIV-Infected Individuals. J.
Interferon Cytokine Res. 35, 875–87 (2015).
96. Malmberg, K.-J. et al.
A short-term dietary supplementation of high doses of vitamin E increases T
helper 1 cytokine production in patients with advanced colorectal cancer. Clin.
Cancer Res. 8, 1772–8 (2002).
97. Al-Huseini, L. M. A. et
al. Heme oxygenase-1 regulates dendritic cell function through modulation
of p38 MAPK-CREB/ATF1 signaling. J. Biol. Chem. 289, 16442–51
(2014).
98. Moon, S.-J. et al.
Rebamipide suppresses collagen-induced arthritis through reciprocal regulation
of th17/treg cell differentiation and heme oxygenase 1 induction. Arthritis
Rheumatol. (Hoboken, N.J.) 66, 874–85 (2014).
99. Hammer, A. et al.
Role of Nuclear Factor (Erythroid-Derived 2)-Like 2 Signaling for Effects of
Fumaric Acid Esters on Dendritic Cells. Front. Immunol. 8, 1922
(2017).
100. Noel, S. et al. T
Lymphocyte-Specific Activation of Nrf2 Protects from AKI. J. Am. Soc.
Nephrol. 26, 2989–3000 (2015).
101. Klemm, P. et al.
Nrf2 expression driven by Foxp3 specific deletion of Keap1 results in loss of
immune tolerance in mice. Eur. J. Immunol. 50, 515–524 (2020).
102. Li, N. et al. Nrf2
deficiency in dendritic cells enhances the adjuvant effect of ambient ultrafine
particles on allergic sensitization. J. Innate Immun. 5, 543–54
(2013).
103. Rockwell, C. E., Zhang, M.,
Fields, P. E. & Klaassen, C. D. Th2 skewing by activation of Nrf2 in CD4(+)
T cells. J. Immunol. 188, 1630–7 (2012).
104. Sireesh, D., Dhamodharan,
U., Ezhilarasi, K., Vijay, V. & Ramkumar, K. M. Association of NF-E2
Related Factor 2 (Nrf2) and inflammatory cytokines in recent onset Type 2
Diabetes Mellitus. Sci. Rep. 8, 5126 (2018).
105. Qiao, Y., Sun, J., Ding,
Y., Le, G. & Shi, Y. Alterations of the gut microbiota in high-fat diet
mice is strongly linked to oxidative stress. Appl. Microbiol. Biotechnol.
97, 1689–97 (2013).
106. Xu, J. et al.
Regulation of an antioxidant blend on intestinal redox status and major
microbiota in early weaned piglets. Nutrition 30, 584–9 (2014).
107. Xu, C. C. et al.
Regulation of N-acetyl cysteine on gut redox status and major microbiota in
weaned piglets. J. Anim. Sci. 92, 1504–11 (2014).
108. Rivera-Chávez, F., Lopez,
C. A. & Bäumler, A. J. Oxygen as a driver of gut dysbiosis. Free Radic.
Biol. Med. 105, 93–101 (2017).
109. Yanaka, A., Kakinoki, N.
& Yamamoto, T. 1103 – Daily Intake of Sulforaphane-Rich Broccoli Sprouts
Improves Bowel Habits in Human Subjects, by Strengthening Nrf2-Dependent
Anti-Oxidant Systems and by Normalizing Gut Microbiota. Gastroenterology
156, S-235 (2019).
110. Cai, J. et al.
Inhibition of influenza infection by glutathione. Free Radic. Biol. Med.
34, 928–36 (2003).
111. Paiva, C. N. & Bozza,
M. T. Are reactive oxygen species always detrimental to pathogens? Antioxid.
Redox Signal. 20, 1000–37 (2014).
112. Sgarbanti, R. et al.
Redox regulation of the influenza hemagglutinin maturation process: a new
cell-mediated strategy for anti-influenza therapy. Antioxid. Redox Signal.
15, 593–606 (2011).
113. Checconi, P. et al.
The Environmental Pollutant Cadmium Promotes Influenza Virus Replication in
MDCK Cells by Altering Their Redox State. Int. J. Mol. Sci. 14,
4148–62 (2013).
114. De Flora, S., Grassi, C.
& Carati, L. Attenuation of influenza-like symptomatology and improvement
of cell-mediated immunity with long-term N-acetylcysteine treatment. Eur.
Respir. J. 10, 1535–41 (1997).
115. Beck, M. A. Selenium and
vitamin E status: impact on viral pathogenicity. J. Nutr. 137,
1338–40 (2007).
116. Fraternale, A. et al.
Effect of the N-butanoyl glutathione (GSH) derivative and acyclovir on HSV-1
replication and Th1 cytokine expression in human macrophages. Med.
Microbiol. Immunol. 203, 283–9 (2014).
117. Palamara, A. T. et al.
Evidence for antiviral activity of glutathione: in vitro inhibition of herpes
simplex virus type 1 replication. Antiviral Res. 27, 237–53
(1995).
118. Wu, Y.-H. et al.
Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E
infection. J. Infect. Dis. 197, 812–6 (2008).
119. Cheng, M.-L., Weng, S.-F.,
Kuo, C.-H. & Ho, H.-Y. Enterovirus 71 Induces Mitochondrial Reactive Oxygen
Species Generation That is Required for Efficient Replication. PLoS One 9,
e113234 (2014).
120. Ho, H.-Y. et al.
Glucose-6-phosphate dehydrogenase deficiency enhances enterovirus 71 infection.
J. Gen. Virol. 89, 2080–9 (2008).
121. Lassoued, S., Gargouri, B.,
El Feki, A. el F., Attia, H. & Van Pelt, J. Transcription of the
Epstein-Barr virus lytic cycle activator BZLF-1 during oxidative stress
induction. Biol. Trace Elem. Res. 137, 13–22 (2010).
122. Mikirova, N. &
Hunninghake, R. Effect of high dose vitamin C on Epstein-Barr viral infection. Med.
Sci. Monit. 20, 725–32 (2014).
123. Noah, T. L. et al.
Effect of broccoli sprouts on nasal response to live attenuated influenza virus
in smokers: A randomized, double-blind study. PLoS One 9, (2014).
124. Lee, C. Therapeutic
modulation of virus-induced oxidative stress via the Nrf2-dependent
antioxidative pathway. Oxid. Med. Cell. Longev. 2018, (2018).
125. Liu, Q., Gao, Y. & Ci,
X. Role of Nrf2 and Its Activators in Respiratory Diseases. Oxid. Med. Cell.
Longev. 2019, 7090534 (2019).
126. Wyler, E. et al.
Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects
NRF2 activation to an antiviral program. Nat. Commun. 10, 4878
(2019).
127. Gunderstofte, C. et al.
Nrf2 Negatively Regulates Type I Interferon Responses and Increases
Susceptibility to Herpes Genital Infection in Mice. Front. Immunol. 10,
2101 (2019).
128. Akuta, T., Zaki, M. H.,
Yoshitake, J., Okamoto, T. & Akaike, T. Nitrative stress through formation
of 8-nitroguanosine: Insights into microbial pathogenesis. Nitric Oxide -
Biol. Chem. 14, 101–108 (2006).
129. Seronello, S. et al.
Ethanol and reactive species increase basal sequence heterogeneity of hepatitis
C virus and produce variants with reduced susceptibility to antivirals. PLoS
One 6, e27436 (2011).
130. Azenabor, A. A., Muili, K.,
Akoachere, J.-F. & Chaudhry, A. Macrophage antioxidant enzymes regulate
Chlamydia pneumoniae chronicity: evidence of the effect of redox balance on
host-pathogen relationship. Immunobiology 211, 325–39 (2006).
131. Yanaka, A. et al.
Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate
gastritis in Helicobacter pylori-infected mice and humans. Cancer Prev. Res.
(Phila). 2, 353–60 (2009).
132. Deramaudt, T. B., Ali, M.,
Vinit, S. & Bonay, M. Sulforaphane reduces intracellular survival of
Staphylococcus aureus in macrophages through inhibition of JNK and p38 MAPK‑induced inflammation. Int. J.
Mol. Med. (2020). doi:10.3892/ijmm.2020.4563
133. Riedelberger, M. et al.
Type I Interferon Response Dysregulates Host Iron Homeostasis and Enhances
Candida glabrata Infection. Cell Host Microbe 27, 454-466.e8
(2020).
No comments:
Post a Comment